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Western Kenya is well known for abundant early Miocene hominoid fossils. However, the Wasiriya Beds
of Rusinga Island, Kenya, preserve a Pleistocene sedimentary archive with radiocarbon age estimates of
>33—45 ka that contains Middle Stone Age artifacts and abundant, well-preserved fossil fauna: a co-
occurrence rare in eastern Affica, particularly in the region bounding Lake Victoria. Artifacts and fossils
are associated with distal volcanic ash deposits that occur at multiple localities in the Wasiriya Beds,
correlated on the basis of geochemical composition as determined by electron probe microanalysis.
Sediment lithology and the fossil ungulates suggest a local fluvial system and associated riparian wooded
habitat within a predominantly arid grassland setting that differs substantially from the modern envi-
ronment, where local climate is strongly affected by moisture availability from Lake Victoria. In partic-
ular, the presence of oryx (Oryx gazella) and Grevy's zebra (Equus grevyi) suggest a pre-Last Glacial
Maximum expansion of arid grasslands, an environmental reconstruction further supported by the
presence of several extinct specialized grazers (Pelorovis antiquus, Megalotragus sp., and a small alcela-
phine) that are unknown from Holocene deposits in eastern Africa. The combination of artifacts, a rich
fossil fauna, and volcaniclastic sediments makes the Wasiriya Beds a key site for examining the Lake
Victoria basin, a biogeographically important area for understanding the diversification and dispersal of
Homo sapiens from Africa, whose pre-Last Glacial Maximum history remains poorly understood.

© 2010 Elsevier Ltd. All rights reserved.

Keywords:

Middle Stone Age
Lake Victoria
Aridity
Pleistocene

Introduction our species characterized by complex demographic shifts and
population movements within Africa (Ambrose, 1998b; Lahr and

The Middle and Late Pleistocene record of eastern Africa Foley, 1998; Howell, 1999; Excoffier, 2002; McDougall et al., 2005;

provides the most important dataset for understanding the origins
of modern human diversity. Fossil and genetic data are consistent
with an eastern Africa origin for Homo sapiens during the later
Middle Pleistocene ( ~200 ka), with the Late Pleistocene history of
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Behar et al., 2008; Tishkoff et al., 2009; Verdu et al., 2009). By
50 ka, portions of one or more African populations had dispersed to
Eurasia and Australia (e.g., Prugnolle et al., 2005; Mellars, 2006;
O’Connell and Allen, 2007). Because of this history, fully under-
standing the biological and behavioral diversity of present day
modern humans requires a more complete understanding of the
variation among early African populations of H. sapiens. This
includes both the biological diversity suggested by the fossil and
genetic data (Lahr and Foley, 1998; Howell, 1999; Pearson, 2008;
Crevecoeur et al., 2009; Gunz et al., 2009), and the geographic
and temporal variation evident in the Middle Stone Age (MSA)
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archaeological record (McBrearty and Brooks, 2000; Henshilwood
and Marean, 2003; Marean and Assefa, 2005; Barham and
Mitchell, 2008; Jacobs et al., 2008).

The relative roles of social or environmental factors in shaping
the diversity of Pleistocene populations of H. sapiens in eastern
Africa remain understudied. The appearance of symbolic artifacts
(e.g., beads) at some Late Pleistocene sites (Ambrose, 1998a;
Bouzouggar et al., 2007; d’Errico and Vanhaeran, 2007; Assefa
et al., 2008) suggests the socially mediated use of material goods
to maintain personal and probably group boundaries (Wobst, 1977;
Kuhn and Stiner, 2007), boundaries that may also be suggested by
the distribution of other artifact forms, including points (Clark,
1988; McBrearty and Brooks, 2000). However, environmental
variation also strongly patterns some aspects of hominin forager
behavior (Kelly, 1995; Binford, 2001; Kuhn and Stiner, 2001), and
eastern Africa is topographically and environmentally complex,
resulting in spatially diverse habitats and localized adaptations by
recent foragers (e.g., Ambrose, 2001; Cornelissen, 2002; Kusimba,
2005; Barham and Mitchell, 2008). Past climate shifts that resul-
ted in the fragmentation and reorganization of plant and animal
communities (Kingston, 2007) may have played a key role in
establishing some of the variability among populations of early H.
sapiens by providing novel adaptive contexts (Ambrose and Lorenz,
1990; Marean et al., 2007; McCall, 2007) and the accumulation of
genetic and behavioral differences by drift (e.g., Mayr, 2001;
Eerkens and Lipo, 2005) among isolated populations.

A number of authors have recently argued for a strong role for
climate change in shaping Late Pleistocene environments and the
dispersal of H. sapiens within and out of Equatorial Africa (e.g.,
Cohen et al., 2007; Scholz et al., 2007; Vaks et al., 2007; Cowling
et al., 2008; Carto et al., 2009; Castafieda et al., 2009). However,
at this stage we have at best an incomplete understanding of the
complex spatial and temporal patterns of climate change in Pleis-
tocene Africa. For example, Scholz et al. (2007) and Cohen et al.
(2007) demonstrate multiple episodes of Late Pleistocene hyper-
aridity or ‘megadroughts,’ far more extreme than observed during
the Last Glacial Maximum (LGM) arid interval (19—26.5 ka; Clark
et al., 2009). Their data suggest that Lakes Malawi and Tanga-
nyika (Fig. 1) had ‘megadroughts’ between ~ 135 and 70 ka, out of
phase with arid intervals predicted by orbital-scale precessional
forcing. In contrast, high lake stands provide strong evidence for
precessional insolation-forced periods of increased humidity at
Lake Naivasha from ~150 to 60 ka and later intervals during the
Pleistocene (Fig. 1; Trauth et al., 2001, 2003; Bergner et al., 2009),
similar to patterns from localities elsewhere in Africa (see discus-
sion in Scholz et al., 2007). These differences suggest that climate
changes within different (sub) regions of the eastern portion of
continent were out of phase, perhaps with a sharp climatic
boundary near the Equator as predicted by some paleoclimate
models (Clement et al., 2004). This marked contrast in aridity
between the southern hemisphere Lakes Malawai and Tanganyika
and the northern hemisphere Lakes Nakuru and Naivasha may be
the result of the different latitude positions of the lake basins in the
East Africa Rift system, due to different responses to orbitally-
driven insolation variations or caused by variations in high latitude
ice volumes in the northern and southern hemispheres, or to zonal
gradients in atmospheric heating that affect the local hydrologic
cycle (Burns et al,, 2001; Clark et al., 1999; Clement et al., 2004;
Scholz et al., 2007; Bergner et al., 2009). Whatever the cause,
such a pattern could have resulted in different regions of eastern
Africa experiencing very different climate regimes, with resulting
sharp boundaries between plant and animal communities that
shifted over time, a scenario more complex than most models of
past environments in the region (cf. Marean and Assefa, 2005;
Basell, 2008). If we are to understand the role of environmental

change in shaping modern human diversity and evolution, we
require detailed environmental and archaeological data from Late
Pleistocene eastern Africa, the time and region where H. sapiens
originated and persisted.

In this context, we describe here our continuing investigation of
pre-LGM artifact- and fossil-bearing tuffaceous sediments from
Rusinga Island, Kenya (Figs. 1 and 2). Rusinga lies near the eastern
shore of Lake Victoria, which has the largest surface area of any lake
in Africa. It is a biogeographically important area (White, 1983;
Kingdon, 1989) for understanding plant and animal dispersals
whose pre-LGM history remains poorly understood. As the Pleis-
tocene sediments on Rusinga have not previously been the focus of
extensive research, we first describe our efforts to provide
a detailed geological context for the recovered stone tools and
fauna. These include the first measured stratigraphic sections and
detailed lithological analyses, the only radiometric age estimates,
and a tephrostratigraphic framework that facilitates correlations
among localities on Rusinga and potentially with more distant
areas. Our excavations have documented the first in situ archaeo-
logical sites on Rusinga, and the recovered MSA artifacts include
points and Levallois flakes, associated with cut-marked fauna.
Unlike most Pleistocene archaeological sites in the Lake Victoria
region, the fauna is relatively abundant and well preserved. The
fauna indicates that these hominins inhabited an open, arid
grassland environment substantially different from the present,
providing the foundation for our inquiry into pre-LGM environ-
mental and archaeological variation in the region.

Biogeographical, evolutionary, and archaeological
significance of the Lake Victoria region

Lake Victoria spans the Equator, is the largest lake in Africa as
measured by surface area [66,400 km?, Adams, 1996], and today
supports diverse ecosystems and dense human populations.
Although the formation of Lake Victoria began perhaps as early as
400 Kka, little is known of the pre-LGM history of the lake or
surrounding region (Johnson et al., 1996, 2000; Stager and Johnson,
2008). Seismic profiles of Lake Victoria suggest multiple periods of
lake contraction and expansion, but sediment cores have only
penetrated the uppermost of these, which shows complete desic-
cation during the LGM and a high stand from ~ 7 to 10 ka that may
have doubled the surface area of the lake (Kendall, 1969; Johnson
et al., 1996, 2000; Stager et al., 1997; Stager and Johnson, 2008),
a pattern seen in other eastern African lakes (Goudie, 1996).
Historic records document smaller scale variance in lake level
(~4 m) over the last 200 years due to changes in mean annual
rainfall (Nicholson, 1998). Because water level is controlled
primarily by rainfall, Lake Victoria today serves as a particularly
sensitive indicator of moisture availability and climate change. As
the lake is shallow (mean and maximum depths are 40 and 68 m,
respectively), even modest changes in lake volume due to precip-
itation change can cause substantial changes in lake surface area
and surrounding habitats.

Seismic data demonstrate that the water level and size of Lake
Victoria fluctuated considerably throughout the history of the lake,
likely as a result of moisture availability (Johnson et al., 1996).
Precise correlation with Pleistocene climatic oscillations is not
currently possible due to a lack of chronological control, but it is
clear that these changes that would have had substantial impacts
on regional floral and faunal communities. Pollen data (Kendall,
1969) and geochemical proxies (Talbot and Laerdal, 2000; Talbot
et al., 2006) from the terminal Pleistocene and Holocene suggest
a shift from swamp margins and C4 grasslands to more forested
areas in the vicinity of Lake Victoria with progressive lake level
increase. The Pleistocene expansion, contraction, and
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Figure 1. Schematic map of eastern Africa showing the major topographic features, biogeographic zones, and sites discussed in text. Major lakes are shaded grey. The location of the
Quaternary volcanoes the Barrier Complex, Silali, Longonot, Suswa, Ol Doinyo Lengai, Meru, and Kilimanjaro are also shown (not to scale). Bold Roman numerals correspond to each
of the major vegetation zones identified by White (1983) bounded by dashed lines. The Lake Victoria regional mosaic is zone XIL. It is bounded by regional centers of endemism:

Guineo-Congolian (I.), Zambezian (II.), Sudanian (III.), Somalia-Masai (IV.), and Afro-alp:

ine (VIIL). Pleistocene archaeological and paleontological sites discussed in the text shown as

circled Arabic numerals: (1) Kanjera, (2) Mugurk, (3) Randhore, (4) Lukenya Hill, (5) Cartwright’s Site, (6) Prolonged Drift, (7) Nasera, (8) Mumba, (9) Magosi, (10) Walasi Hill, (11)

Omo Kibish, (12) Lainyamok. Aduma and Porc-Epic, both in Ethiopia are not shown.

fragmentation of these woodland, grassland, and lakeside habitats
may have provided dispersal avenues and/or refugia for flora and
fauna, including hominins (White, 1983; Kingdon, 1989; Lahr and
Foley, 1998; Marean and Assefa, 2005; Cowling et al., 2008).
Biogeographic data support this hypothesis, as the region bounding
Lake Victoria is a mosaic habitat between adjacent regional centers
of floral and faunal endemism (Fig. 1). The distribution of extant
taxa suggests that the Lake Victoria region was an important area of
dispersal during periods of environmental change (Fig. 1; Kingdon,
1974, 1989; White, 1983; Grubb et al., 1999; Wronski and Hausdorf,
2008). As described below, the Pleistocene sediments from Rusinga
document pre-LGM faunal communities without modern
analogues in the Lake Victoria region, and include taxa beyond their
historic ranges.

Paleoanthropological work in the Lake Victoria region, particu-
larly in western Kenya, has focused primarily on Miocene (Oswald,
1911,1914; Kent, 1942, 1944; Le Gros Clark and Leakey, 1951; McCall,
1958; Andrews, 1981; Pickford, 1986) or Plio-Pleistocene sites
(Ditchfield et al., 1999; Plummer et al., 1999, 2009; Braun et al.,
2008). In fact, the Lake Victoria area has not featured promi-
nently in discussions of the origins of H. sapiens since L.S.B. Leakey’s
work at Kanjera and Kanam in the 1930s (see Ditchfield et al., 1999
for a historical review). Collections and detailed excavations from
Pleistocene sites on islands within and around the perimeter of
Lake Victoria have contributed large samples of stone artifacts and
clarified the stratigraphic succession of various Stone Age indus-
tries (O’Brien, 1939; Leakey and Owen, 1945; Van Riet Lowe, 1952;
Cole, 1967b; Nenquin, 1971; Van Noten, 1971; McBrearty, 1981,
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1988; Pickford, 1982, 1991, 1992; Posnansky et al., 2005). However,
few of these sites contain both stone artifacts and fauna as fossil
preservation is typically poor and limited to isolated teeth, or when
fauna is well preserved, fossils come from uncertain, complex, or
largely unexplored stratigraphic contexts (e.g., the Apoko Forma-
tion at Kanjera, see Plummer et al., 1994; Behrensmeyer et al., 1995;
Ditchfield et al., 1999). The paucity of fauna and the near total lack
of chronological control hinder our understanding of Pleistocene
biogeography and archaeology in the Lake Victoria region, limiting
the contribution of this area to our understanding of modern
human diversity. The presence of in situ MSA artifacts and associ-
ated fossil fauna in dated sediments at Rusinga therefore marks
a major step towards resolving the Quaternary archaeology and
biogeography of the Lake Victoria region.

Historical and geological context of the Wasiriya Beds

Fossil- and artifact-bearing deposits that overlie the Miocene
strata on Rusinga have been noted since detailed paleoanthropolog-
ical exploration of the island by L.S.B. Leakey began in the 1930s (Kent,
1942; Maclnnes, 1956; Van Couvering, 1972; Leakey, 1974; Pickford
and Thomas, 1984; Pickford, 1986). However, these younger beds
have been examined primarily as an adjunct to work in the rich
Miocene deposits (Le Gros Clark and Leakey, 1950, 1951; Napier and
Davis, 1959; Andrews, 1981; Pickford, 1986; Walker and Teaford,
1988; Collinson et al., 2009). Renewed fieldwork on Rusinga initi-
ated in 2006 (McNulty et al., 2007; Peppe et al., 2009) continued this
trend, but in January 2009 was expanded to include the first formal
archaeological surveys and excavations. While Pleistocene fossils
have been reported across much of the island (Van Couvering, 1972;
Pickford, 1986), our research thus far has focused on exposures on
the southern portion of Rusinga, where both fossils and stone artifacts

have been recovered, particularly from the Wakondo, Nyamita, and
western Nyamsingula (Kakrigu) localities (Fig. 2).

Pickford and Thomas (1984) introduced the term, ‘Wasiriya
Beds,” to describe sediments first mapped by Van Couvering (1972)
as the Wasiriya Terrace, following terminology introduced by Kent
(1942). The Wasiriya Beds crop out discontinuously over an area of
<10 km? around the perimeter of Rusinga Island, at elevations
ranging from ~ 15 to 36 m above the present level of Lake Victoria
(Fig. 2). Wasiriya Beds sediment thickness varies, generally thin-
ning towards the island margin from >10 m near the uplands at the
island’s center (Van Couvering, 1972) to <5 cm near the modern
shore of Lake Victoria. The exposed sediments sample valley fill
deposits that overlie a complex eroded topography of indurated
Miocene sediments. Previous researchers (Van Couvering, 1972;
Pickford and Thomas, 1984; Pickford, 1986) have described from
the Wasiriya Beds sediments that range from poorly stratified clays
to silts and coarse sands, as well as stony, clayey soils with lava
clasts. Fig. 3 shows measured stratigraphic sections from Wakondo
and Nyamita, the first described from the Wasiriya Beds. These
record a complex cut-and-fill fluvial environment with substantial
lateral facies variation among silts, sands, conglomerates. Prelimi-
nary work suggests that the channels in these sequences were
<1 m to several meters wide. Further work describing the dimen-
sions of the channels and the channel complexes is part of our
ongoing research goals. Pedogenic silcrete and carbonate nodules,
rootcasts, and reworked and airfall tephra deposits are also locally
abundant.

Radiometric age estimates for the Wasiriya Beds

Previous researchers have suggested ages for the Wasiriya Beds
ranging from the Middle Pleistocene (Kent, 1942; Van Couvering,

KEY:
[] Recent alluvium
[[] wasiriya Beds
Lunene Lavas
[] other Miocene rocks
rrrrrr Elevation at 61m intervals

QO Artifact/fossil locality

Lake Victoria

Nyamita

Rusinga Island

Wakondo

Mainland Kenya

Figure 2. Schematic map of Rusinga Island, Kenya, showing topography, selected geological units and the position of artifact and fossil localities discussed in the text. After Van

Couvering (1972) and Pickford (1986).
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correlations made on the basis of electron probe microanalyses of tephra. Gastropod shells at Nyamita have calibrated AMS radiocarbon age estimates between ~33 and 45 ka. See

text for discussion.

1972) to the Holocene (Pickford and Thomas, 1984), based on
artifact typology and a fossil fauna that consisted primarily of
extant taxa. Our work in 2009 resulted in the first radiometric age
estimates available, based on AMS radiocarbon dates on the
carbonate fractions of three gastropod shells (Limicolaria cf. L.
martensiana) from Nyamita (Fig. 3). The absence of calcite in the
shells and thus their suitability for dating was determined using X-
ray diffraction and thermogravimetric/differential thermal analysis.
The samples yielded ages of 41 700 4+ 1 400 (AA-85425),
35 730 + 690 (AA-86524), and 28 670 + 600 (AA-85426) radio-
carbon years before present, or calibrated ages of 45 355 + 1 456,
40 494 + 1 048 and 33 120 + 645 calendar years BP (based on the
CalPal-20074yu1y '4C calibration curve of Weninger and Jéris (2008)).

These dates provide approximate minimum ages for the
Wasiriya Beds. Because gastropods incorporate ingested calcium
carbonate into their shells, radiocarbon dates from them are often
anomalously old, with a maximum offset of ~3 kyr (Goodfriend
and Stipp, 1983; Goodfriend, 1987), and a 0.6 kyr offset recorded
for specimens of sister taxa (Limicolaria kambeul chudeaui) from
northwestern Sudan (Haynes and Mead, 1987). The gastropods at
Nyamita are found within a ~3-m-thick indurated tuffaceous
deposit, for which the precise stratigraphic relation to the artifact-
and fossil-bearing strata is uncertain (Fig. 3). The snails presumably
burrowed into this sediment after deposition (but prior to lithifi-
cation) to aestivate. The ~ 12 kyr range among the ages, combined
with preserved rootcasts, suggests incipient pedogenesis and
a prolonged period of landscape stability. Given the complex
paleotopography suggested by the present exposures of an ancient
complex cut-and-fill fluvial sequence, the relation of the dated
specimens to other fossils and artifacts remains imprecise.

Nevertheless, the radiocarbon ages are the first and only radio-
metric dates available, and although near the limit of the radio-
carbon method, strongly suggest that the Wasiriya Beds pre-date
the LGM.

Wasiriya Beds tephra composition and correlation

A more finely resolved understanding of local Wasiriya Beds
stratigraphic sequences is provided by distal reworked and fallout
tephra deposits at Wakondo and Nyamita (Figs. 2 and 3).
Geochemical compositional analysis of tephra allows the determi-
nation of the stratigraphic equivalence of layers among disparate
outcrops on Rusinga, and provides the potential for tephrostrati-
graphic correlation with pyroclastic deposits and volcanic sources
elsewhere. Polished thin sections were prepared from each sample
collected at the outcrop (shown in Fig. 3) to facilitate petrographic
inspection and compositional analysis by electron microprobe.
Samples CAT09-01 and CAT09-21 are primary tephra-fall (or
minimally reworked) well-sorted ash-sized vitric tuffs, following
the terminology of Schmid (1981), whereas the remaining samples
are variably reworked but contain fresh volcanic glass shards and
crystals set in a predominantly clay-to-silt-sized groundmass.

Geochemical composition of the vitric (glass) phase was deter-
mined by electron probe microanalysis (EPMA), using back-
scattered and secondary electron images to identify areas of fresh
glass for analysis. Samples were run using the JEOL JXA-8200
electron microprobe, housed in the Department of Earth and
Planetary Sciences at Rutgers University, using a 40° takeoff angle.
Analyses employed a 15 kV accelerating voltage, a 10 nA current,
and used a rasterized beam over an area of ~25 pm?, with beam
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size constrained by the fine grain size of some of the Wasiriya Beds
samples, particularly CAT09-01. A time dependent intensity
element correction with a 2 s (second) interval was applied using
Probe for EPMA software (Donovan et al., 2009) to minimize
volatile element loss, a persistent problem in the analysis of
volcanic glass (Hunt and Hill, 1993, 1996, 2001). Counting times
were from 10 to 20 s on-peak and 5—10 s off-peak. Reference
materials used for calibration of the analyses include plagioclase
(USNM 115900), microcline (USNM 143966), anorthite (USNM
137041), hornblende (USNM 143065), and fayalite (USNM 85276),
characterized by Jarosewich et al. (1980; see also Jarosewich, 2002),
as well as synthetic tephroite and orthopyroxene from the type
specimen of the Tatahouine meteorite (Barrat et al., 1999 and
references therein). Raw data were converted to concentrations
using standard calculations with an Armstrong-Love/Scott ZAF
matrix correction (Armstrong, 1988).

The elemental oxide abundances of nine major and minor
elements were determined for each sample. Approximately 15
grains were analyzed per sample, with one analysis per grain for
a total of 116 analyses. Results are summarized in Table 1. Samples
with totals <92% were excluded from further analyses; this value is
arbitrary, but is above acceptable levels noted by Froggatt (1992)
and follows a natural break in the distribution of totals for all
analyses (see Pollard et al., 2006). Sample CAT09-02 from Nyamita
is subdivided into CAT09-02a and CAT09-02b on the basis of two
populations of morphologically indistinguishable shards with
distinct relative weight. % abundances of Al,03, FeO, MgO, and CaO
(Table 1). Sample CAT09-02 was analyzed twice in order to obtain
a representative sample of both shard (sub) populations. Data are
not normalized except where required for comparison with whole
rock analyses. Although there remains debate as to the advantages
and disadvantages of sample normalization in tephrochronological
research (cf. Hunt and Hill, 1993; Pollard et al., 2006; Pearce et al.,
2008), the tephra correlations proposed here work with either raw
or normalized data, providing further support for stratigraphic
equivalence among the deposits. We report results from our anal-
yses of raw data here.

There are diverse methods for correlating tephra deposits on the
basis of geochemical composition (e.g., Denton and Pearce, 2008;
Lowe et al., 2008; Quade and Wynn, 2008). For the Wasiriya Beds
tephra, we infer sample equivalence (correlation) among those
samples whose means overlap at one standard deviation in the
wt. % abundance of all analyzed element oxides. As any correlation
is best treated as a hypothesis (e.g., Feibel, 1999; Brown et al., 2006),
we explore sample equivalence by principal components analysis
(PCA) and test it using multivariate analysis of variance (MANOVA).
PCA is used to visualize the distribution of samples in a low-
dimensional space, with MANOVA and post hoc Hotelling’s T? used
to test whether geochemical centroids of different tephra samples
are significantly different. This approach provides a conservative
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Figure 4. Bivariate plot of the first and second axes of a principal components analysis
of element oxide weight percent abundances of Wasiriya Beds tephra determined by
electron microprobe. Results suggest that samples CAT09-01 and CAT09-05 are
correlative, as are samples CAT09-02b, CAT09-03, and CAT09-21. Sample location is
shown in Fig. 3, with summary values listed in Table 1.

estimate of correlations. Canonical ordination is mathematically
designed to maximize differences among groups (Neff and Marcus,
1980), and is computationally similar to discriminant analysis,
a method widely used in tephrostratigraphy (e.g., Stokes and Lowe,
1988; Stokes et al., 1992; Charman and Grattan, 1999; Pollard et al.,
2006; Tryon et al, 2009). Because of our very conservative
approach, samples that are found not to differ statistically repre-
sent robust hypotheses of equivalence.

Results of a one-way MANOVA indicate that there are significant
differences in the geochemical composition of different samples in
the total sample pool, suggesting that it is highly unlikely that all
sampled tephra deposits derive from a single eruption (p < 0.0001
for Wilk’s lambda, Pillai’s trace, Hotelling—Lawley trace and Roy’s
greatest root), confirming stratigraphic observations of multiple
depositional events. Among our data set, the mean wt. % values of
all element oxides overlap at one standard deviation for phonolitic
samples CAT09-01 and CAT09-05, suggesting correlation. Trachytic
samples CAT09-02b, CAT09-03, and CAT09-21 show the same
overlap, suggesting that these three deposits are correlative but
distinct from samples CAT09-01 and CAT09-05 (Table 1). As shown
in Fig. 4, these correlations are well supported in a PCA multivariate
ordination. Results of the pairwise Hotelling’s T? tests statistically
confirm the correlations suggested by single element examinations
(Table 2). Samples CAT09-01 and CAT09-05 are significantly
different from all other samples, but cannot be shown to differ from
each other. Similarly, no differences were found between CAT09-03
and either CAT09-02b or CAT09-21.

Table 1

Major and minor element oxide abundances of Wasiriya Beds tephra determined by electron probe microanalysis, listed as mean and one standard deviation.
Sample n SiO, TiO, Al;03 FeO MnO MgO Cao Na,0O K;0 Total
CAT09-01° 14 5807 +099 053+0.02 1554+0.13 734+041 031+005 029+002 096+0.08 853+028 461+012 96.18
CAT09-02a 12 6292+098 058+003 1090+035 863+056 033+008 011+002 045+014 731+024 432+0.12 9556
CAT09-02b® 18 6046 +1.42 061+002 1593 +020 6.31+036 028+007 033+002 090+016 742+029 498+018 9721
CAT09-03P 14 6067 +085 0.61+0.02 1570+028 645+051 028+009 033+002 080+012 742+065 491+020 97.18
CAT09-04° 14 59.12+081 058+0.02 1570+021 616+060 024+004 034+005 121+0.08 7.11+0.18 481+029 9528
CAT09-05° 14 5803 +146 054+0.02 1557 +0.19 759+058 030+0.03 028+002 094+0.07 841+048 462+015 96.27
CAT09-21° 14 6066 £081 0.60+002 1583+022 638+020 023+007 032+002 0.81+010 726+031 484+028 9694
CAT09-22° 16 5997 +1.01 055+0.04 14.77+028 733+029 028+007 030+003 061+005 7.56+088 4714016 96.06

n = number of analyses per sample
2 Phonolite composition according to the method of Le Bas et al. (1986).
b Trachyte composition according the method of Le Bas et al. (1986).
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Table 2
Pairwise Hotelling’s T? results that test for sample differences on the basis of geochemical composition.
Sample CAT09-01 CAT09-02a CAT09-02b CAT09-03 CAT09-04 CAT09-05 CAT09-21 CAT09-22
CAT09-01
CAT09-02a *
CAT09-02b * *
CAT09-03 * * 0.0923
CAT09-04 * i * *
CATO09-05 0.7181 * * * *
CAT09-21 * * 0.0206* 0.3119 * *
CAT09_22 * * * * * * *
“p < 0.0001.

2 Not significant according to a Bonferroni correction for multiple comparisons.

Our tephrostratigraphic results permit us to correlate outcrops
that could not be related in the field because of discontinuous
exposure at Nyamita (samples CAT09-03, CAT09-2b, and CAT09-21;
Fig. 3). The compositional similarity of subsample CAT09-02b with
CAT09-03 and CAT09-21 suggests that the bimodal composition of
CAT09-02 is due to mechanical admixture through post-depositional
reworking of formerly distinct tephra, rather than a result of mamga
heterogeneity at eruption (cf. Shane et al., 2008). The same tephra
deposit is found at both Nyamita and Wakondo (samples CAT09-01
and CAT09-05), indicating that both localities sample sediments,
artifacts, and fossils of a similar temporal range (Fig. 3). Samples
CAT09-02a, CAT09-04, and CAT09-22 have no correlates. Combined
with the evidence for correlation presented above, the Wasiriya Beds
preserve at least four geochemically distinct distal deposits of
trachytic tephra and one widespread deposit of phonolitic tephra
(Table 1).

Possible source and age of the Wasiriya Beds tephra

The volcanic sources closest to the Wasiriya Beds lie within the
Nyanza Rift, but are Mio-Pliocene in age (Pickford, 1982; Woolley,
2001) and thus inconsistent with available age estimates for the
Wasiriya Beds. Although it is possible that smaller unnamed vents
or fissures close to Rusinga are the sources of the Wasiriya Beds
tephra, their fine grain size, composition, and position relative to
dominant wind patterns suggest sources to the west in the East
African rift system, where large volumes of primarily trachytic (and
rarely phonolitic) tephra were erupted from multiple Quaternary
volcanoes (Dunkley et al, 1993; Pyle, 1999; Woolley, 2001;
Macdonald and Scaillet, 2006), particularly in the Kenyan portion
of the Gregory Rift. Most Quaternary eruptions in Ethiopia, Uganda,
and Tanzania produced rhyolites, basalts, carbonatites (see
Woolley, 2001 and references therein) or other volcaniclastic rocks
compositionally distinct from the Wasiriya Beds trachytic and
phonolitic tephra.

There are insufficient comparative data on the geochemical
composition of tephra from the East African rift system volcanoes to
make any confident source attributions, particularly for the
trachytic deposits. However, fewer Quaternary volcanoes erupted
phonolitic lava or tephra (Macdonald, 1987; Clarke et al., 1990;
Dunkley et al., 1993; Skilling, 1993; Woolley, 2001; Dawson,
2008). Their locations are shown in Fig. 1. At >400 km away, the
Barrier Volcanic Complex of northern Kenya (Dunkley et al., 1993)
and Oldoinyo Lengai, Meru, and Kilimanjaro in northern Tanzania
(Dawson, 2008) are the least likely sources. At Silali, the phonolites
are limited to Holocene lava flows (Dunkley et al., 1993); Pleisto-
cene explosive tephra-producing eruptions on Silali were trachytic
(Tryon et al., 2008).

We consider Longonot and Suswa the most likely sources for the
Wasiriya Beds tephra, although this hypothesis requires a consid-
erable number of geochemical analyses to test it. At ~250 km,

Longonot and Suswa are the closest sources of phonolitic ash.
Longonot and Suswa apparently share an eruptive history, with
shield formation on each volcano beginning <400 ka (Scott and
Skilling, 1999). On Suswa, pre-caldera deposits are trachytic over-
lain by exclusively phonolitic post-caldera deposits (Skilling, 1993).
The lowermost post-caldera phonolites at Suswa have two K—Ar
age estimates of 100 + 10 ka (Baker et al., 1988), overlain by 1-25 m
of phonolitic tephra fallout deposits (Skilling, 1993). Tephra from
Longonot and Suswa, termed the Mau Ashes, have a maximum
observed thickness of >220 m and have been mapped across an
area up to 150 km west of their source (Randel and Johnson, 1991;
Williams, 1991). This indicates past wind patterns that dispersed
tephra primarily to the south as well to the west towards Lake
Victoria, making it likely that discontinuous deposits of these
tephra are preserved in more distal areas, such as in the Wasiriya
Beds of Rusinga Island (cf. Pickford, 1982). Should a Longonot or
Suswa source for the basal phonolitic tephra deposit at Wakondo
and Nyamita be confirmed, it would suggest a maximum age of
100 =+ 10 ka for these Wasiriya Beds exposures.

The archaeology of the Wasiriya Beds

Earlier researchers reported Acheulian and Sangoan imple-
ments from the Wasiriya Beds (identified by L.S.B. Leakey, reported
in Kent, 1942; Van Couvering, 1972). These artifacts, primarily picks
and handaxes, are stored in the National Museums of Kenya. Our re-
inspection confirmed the initial typological diagnosis. These arti-
facts are rolled, substantially weathered, and have preservation
states quite unlike the fresh, minimally altered typologically MSA
material we have observed on Rusinga. Although we have yet to
find such material in situ, the handaxes and picks hint at a long
archaeological sequence on Rusinga, as such artifacts typically date
to the Early or Middle Pleistocene elsewhere in eastern Africa
(McBrearty and Tryon, 2005; Barham and Mitchell, 2008).

Although we collected sparse fossils and artifacts from the
Gumba and Hiwegi localities (Fig. 2), our 2009 surveys and test
excavations focused on the western Nyamsingula, Nyamita and
Wakondo localities. We conducted excavations at Nyamita and
Wakondo where artifacts and fossils were most densely distrib-
uted. Our tephrostratigraphic correlations show Nyamita and
Wakondo to be approximately age-equivalent (Fig. 3), and our
initial test excavations at both localities document the first in situ
artifacts recovered from the Wasiriya Beds. We excavated 4 m?
trenches to a depth of up to 0.7 m at both localities, followed
arbitrary (10-cm thick) levels, sieved with 6.4 mm wire mesh, and
plotted all surface and excavated finds relative to a site datum. Both
Nyamita and Wakondo have spatially discrete (~50 m?) surface
and in situ fossil and artifact concentrations that at each locality
apparently derive from a single, although broad, stratigraphic
interval.
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Artifacts at Nyamita and Wakondo were recovered from
a complex cut-and-fill fluvial sequence, and at Nyamita elongated
artifacts were aligned parallel or perpendicular to local channel
margins, suggesting reorientation by stream flow (Schick, 1986). In
situ faunas were sparse at Wakondo, making comparable orienta-
tion data unavailable for the fauna. Because our focus in the anal-
ysis of fauna thus far has been on taxonomic identification of
primarily cranio-dental elements, detailed taphonomic analyses of
these and other specimens have only just begun. However, our
initial study of the recovered fossils indicates well-preserved bone
cortical surfaces and, like the artifacts, the fauna also suggests
complex taphonomic histories at these localities. Based on field and
preliminary laboratory observations, the type and range of bone
weathering (Behrensmeyer, 1978) suggests rapid burial at Nyamita
and western Nyamsingula (primarily weathering stages 0—1) and
more prolonged exposure at Wakondo (primarily weathering
stages 2—3). Carnivore damage, specifically tooth punctures and
gnaw marks, is present at all localities, with gastric etching
observed among the Wakondo material. The presence of multiple,
deep, v-shaped butchery marks on a large bovid vertebral fragment
from Wakondo demonstrates the active role of hominins in the
accumulation of at least some of the fauna (Fig. 5). A more detailed
study is in progress to assess the relative contribution of the
different accumulation agents to the faunal assemblages at
Wakondo and Nyamita, and until complete, the site formation
processes at these localities remain unresolved. Despite this qual-
ification, Wakondo joins the very small sample of open-air eastern
African MSA sites with stone artifacts and associated fauna
(reviewed by Dominguez-Rodrigo et al., 2007).

The artifacts (n = 176) consist of flaking debris (cores, flakes,
and flake fragments) and rare (n = 8) retouched pieces, summa-
rized in Table 3, with a sample illustrated in Fig. 6. Cores and core
fragments include one multiplatform core with at least 10
removals (Fig. 6h) and three casual cores with <2 flake removals
each. One small specimen (maximum dimension = 5.1 cm) may be

Table 3
Counts of surface and excavated (in parentheses) lithic artifacts collected from the
Wasiriya Beds in 2009.

Nyamita Wakondo Nyamsingula Artifact
Type
Total
Complete Flakes 15 (3) 13 (0) 0 31
Proximal Flake 19(8) 7(3) 2 39
Fragments
Other flake 50 (13) 23 (6) 0 92
fragments
Retouched Pieces 7 (0) 1(1%) 0 9
Cores 2(2) 1(0) 0 5
Locality Total 119 55 2 176

¢ Found in situ but not from excavation.

either a discoidal core made on a flake or a Levallois core, from
which the last Levallois flake overshot the core margins and
removed most of the upper flaking surface prior to subsequent
smaller flake removals (Fig. 6¢). The small sample of complete
flakes (n = 31) is dominated by pieces with plain striking plat-
forms and few dorsal scars, most originating from the same
direction as the striking platform. The combined Wasiriya Beds
sample includes 14 Levallois flakes or proximal flake fragments
(Fig. 6a, b, f) as well as five blades and blade proximal fragments
with relatively wide striking platforms (Fig. 6g, i, j). Formal tools
include bifacially and unifacially flaked points or pointed pieces
(Fig. 6d—e), a retouched elongated Levallois flake (Fig. 6a), and
miscellaneous other retouched pieces. No hammerstones or other
percussors were recovered.

The artifacts are made of chert (n = 53), quartzite (n = 4), quartz
(n = 2), and at least 18 types of lava distinguished on the basis of
color, texture, and phenocryst type and abundance seen macro-
scopically and under 10X magnification. The most abundant lava
type (‘type A’, n = 55) is lithologically similar to the Lunene Lavas
described by Shackleton (1950), outcrops of which cap the central
highlands on Rusinga <2 km north of Nyamita and Wakondo

Figure 5. (A) Lateral view of a weathered bovid cervical vertebra fragment retaining large v-shaped butchery marks suggesting disarticulation at the base of the neck. (B) Close-up
and (C) profile view of a large, v-shaped cutmark on the body of the vertebra. (D) Multiple parallel cutmarks on the transverse process. Scale bar in each image is equal to one cm.
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Wasiriya Beds Artifacts 2009 collections

g8
816 10 |

2U(

Figure 6. Artifacts from the Wakondo and Nyamita localities in the Wasiriya Beds collected in 2009: (a) retouched elongated Levallois flake fragment, lava, in situ, Wakondo, (b)
Levallois eclat débordant (edge of core or core trimming flake), lava, surface, Nyamita, (c) Levallois/discoidal core, lava, in situ, Nyamita, (d) bifacially retouched point, chert, surface,
Nyamita, (e) unifacially retouched pointed flake, lava, surface, Nyamita, (f) Levallois flake fragment, lava, surface, Nyamita, (g) blade? fragment, lava, surface, Wakondo, (h) multiple
platform core, lava, surface, Nyamita, (i) elongated flake or blade, lava, surface, Wakondo, (j) blade, lava, surface, Nyamita.

@W :

(Fig. 2). Cortex is present on only 8% (n = 14) of the complete cortex. The precise sources of the stone raw materials used remain
artifact sample. Conglomerates exposed at both sites could have unknown.

and likely did serve as raw material sources, but clasts in these Levallois flakes and other retouched pieces are heavily repre-
juvenile sediments are angular and lack well-developed fluvial sented among the raw material types identified by a single
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Table 4

Taxonomic list and number of identified specimens (NISP) of mammalian fossils from the Wasiriya Beds.

Taxon Common name Nyamita Wakondo Nyamsingula Other Localities Wasiriya Beds Total
Crocuta crocuta Spotted hyena 3 0 0 0 3
Orycteropus crassidens?® Aardvark 1 0 0 0 1€
Elephantidae cf. Loxodonta africana Elephant 0 0 1 0 1
Equus burchelli Burchell’s zebra 0 0 1 3 4
Equus grevyi® Grevy's zebra 2 2 1 0 5
Equus sp. indet. Zebra 2 0 5 4 11
Hippopotamus cf. H. amphibius Hippopotamus 3 0 0 1 4
Phacochoerus sp. Warthog 1 3 3 2 9
Taurotragus oryx® Eland 2 0 0 0 2
Tragelaphus strepsiceros® Greater kudu 0 0 0 1 1
Oryx gazella® Oryx 1 0 2 0 3
Redunca sp. small Reedbuck 5 1 2 3 11
Reduncine sp. larger Reedbuck/Waterbuck 1 1 3 0 5
Connochaetes taurinus® Wildebeest 8 3 17 7 35
Megalotragus sp. indet.? Giant wildebeest 1 1 1 0 3
Alcelaphus buselaphus Hartebeest 0 2 1 8 11
Small Alcelaphine (cf. Damaliscus)* 5 4 10 7 26
Alcelaphini cf. Alcelaphus/Damaliscus Alcelaphini 17 60 23 40 140
Alcelaphini indet. Alcelaphini 5 14 9 6 34
Gazella cf. G. thomsoni Thomson’s Gazelle 2 0 1 4 7
Gazella cf. G. granti Grant’s Gazelle 4 0 1 2 7
Antilopini indet. Antilopini 1 0 0 1 2
Ourebia ourebi Oribi 3 0 2 3 8
Syncerus caffer Cape Buffalo 0 2 0 4 6
Pelorovis antiquus® Giant Buffalo 0 1 1 0 2
Bovini indet. Buffalo 0 1 0 1 2
=NISP 67 95 84 97 343

Note that specimens from localities other than Nyamita, Wakondo, and Nyamsingula include limited specimens from Hiwegi that we collected in 2009 as well as those
collected from across the island by previous researchers, for which precise provenance cannot always be determined.

2 Extinct
b Qutside historic range
¢ Estimated from Maclnnes (1956).

specimen. Eight types of lava are defined by one artifact each, but
half of these artifacts (n = 4) are Levallois flakes or Levallois flake
fragments, of which only 14 were recovered. Levallois flakes are
thus significantly more abundant among the rare lava types than
expected by chance (Fisher’s exact test because of sparse cells,
p = 0.002). The absence of associated manufacturing debris with
these Levallois flakes suggests their preferential transport from
manufacturing sites elsewhere, a feature of Levallois flakes also
noted for some Eurasian Mousterian sites (e.g., Geneste, 1989).
Similarly, the bifacially retouched point (Fig. 6d) is made of green
chert, different from 51 of the 52 remaining pieces of cryptocrys-
talline silica recovered that are a white-and-red mottled material.
Combined with the relatively few cores (n = 5), these data suggest
that the sites studied thus far were largely areas of stone artifact use
and discard rather than production.

Points, Levallois flakes, and perhaps blades at Nyamita,
Wakondo, and western Nyamsingula indicate a Middle Stone Age
(MSA) attribution for these assemblages (e.g., Clark and Kleindienst,
2001), consistent with the absence of handaxes, cleavers, microliths
or other stone implements from these localities diagnostic of the
Early or Later Stone Age. Although our small sample size precludes
detailed comparison, the Wasiriya Beds assemblages are broadly
similar to the few excavated and published (but as yet undated)
MSA assemblages from the Lake Victoria region, including the
Pundo Makwar Industry at Muguruk (McBrearty, 1988), and arti-
facts from Songhor (McBrearty, 1981) and the basal levels at
Randhore rockshelter (Gabel, 1969). Our Wasiriya Beds sample
lacks the distinctive Lupemban lanceolates, likely Middle Pleisto-
cene in age (Barham, 2000), that are found at many sites in central
and eastern Africa (see Banks et al., 2006). Instead, the diminutive,
carefully worked points and pointed pieces such as those found at
Nyamita (Fig. 6d—e) are more characteristic of assemblages found at
a number of sites in eastern Africa dated to or presumed to date to

the Late Pleistocene, an age consistent with our estimates from
radiocarbon and tephrostratigraphic data. These include site
Gvjm16 at Lukenya Hill (Merrick, 1975; Marean, 1990), Songhor
(McBrearty, 1981), Prolonged Drift (Merrick, 1975; Waweru, 2007),
and Cartwright's Site (Waweru, 2007) in Kenya, Nasera and Mumba
rockshelters in Tanzania (Mehlman, 1989, 1991), Walasi Hill
(O’Brien, 1939) and Magosi in Uganda (Wayland and Burkitt, 1932;
Clark, 1957; Cole, 1967a), and Aduma (Yellen et al., 2005) and Porc-
Epic Cave (Perlés, 1974; Clark et al., 1984; Pleurdeau, 2005; Assefa
et al,, 2008) in Ethiopia. The combination of small points and
large blades is unusual, but from our small sample size it is
impossible to determine if this represents behavioral variation,
time averaging, or even differences due to raw material as shown
for MSA sites in the Kenya Rift Valley and areas to the north (Tryon
et al.,, 2008).

Wasiriya Beds fauna and paleoenvironmental context

Available sedimentary evidence suggests that the Wasiriya Beds
sample a range of subaerial fluvial depositional environments.
Fossil fauna are relatively abundant in the Wasiriya Beds, and
include numerous micromammals currently under study. The
recovered macromammals suggest ancient habitats substantially
different from the present.

Table 4 lists the mammalian fauna for the Wasiriya Beds, based
on our surface collections and excavations through 2009, as well as
the reanalysis of specimens collected by previous research teams.
As a result, we have substantially increased the taxonomic range of
recovered fauna (cf. Pickford, 1986). Surface collection focused
primarily on specimens that could be identified to taxon. For
bovids, this included primarily horn cores, crania, mandibles, and
isolated teeth. Post-cranial elements were also collected, although
our analysis presented here focuses only on taxonomically
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Figure 7. (a) Habitat distinctions from correspondence analyses of bovid abundances in African game parks (diamonds) and Pleistocene (triangles) and Holocene (circles)
archaeological sites. Habitat boundaries encircled by dashed lines are arbitrary. (b) Schematic map of East Africa showing position of archaeological sites and selected game parks

shown in (a), plotted against climatic zones of Pratt and Gwynne (1977).

identifiable specimens. Taxonomic identifications were made with
the assistance of modern comparative material and fossil collec-
tions stored at the National Museums of Kenya (NMK), Nairobi,
with taxonomic abundances quantified according to the number of
identified specimens (NISP) (Grayson, 1984).

Water-dependent taxa, such as Hippopotamus and reduncine
bovids (waterbucks and reedbucks), are consistent with the fluvial
setting inferred from the sediments. However, the remaining fauna
suggest that this fluvial setting represented a local habitat within
a relatively dry, open, grassland environment. The faunal assem-
blage is dominated by alcelaphine bovids (73% of NISP), suggesting
the predominance of open grassland vegetation (Vrba, 1980). The
Wasiriya Beds fauna also includes arid-adapted ungulates, such as
oryx (Oryx gazella) and Grevy’s zebra (Equus grevyi), both of which
are absent historically from this region and today are restricted to
regions east and south of Lake Victoria (Kingdon, 1979, 1982; see
alsoTable 4). Our sample also includes several extinct ungulates: the
giant buffalo (Pelorovis antiquus), the giant wildebeest (Mega-
lotragus sp.), and a small unnamed alcelaphine (cf. Damaliscus) also
known from Late Pleistocene contexts at Lukenya Hill in south-
central Kenya (Marean and Gifford-Gonzalez, 1991; Marean, 1992).
The unnamed alcelaphine (cf. Damaliscus) material from the
Wasiriya Beds was identified by direct comparison with the Lukenya
Hill material housed at the NMK. The extinct bovids are associated
elsewhere with faunas indicative of dry and open habitats (Klein,
1980; Vrba, 1987; Marean and Gifford-Gonzalez, 1991; Marean,
1992). The Wasiriya Beds fauna is similar to that from Lukenya
Hill, although the Wasiriya Beds sample is distinguished from it by
fewer numbers of the small extinct alcelaphine bovid. Much of the
Lukenya Hill material has been interpreted as representing an
expansion of arid grasslands during the LGM (Marean, 1992),
although some strata pre-date this arid interval (Marean, 1992;
Ambrose, 1998a).

An analysis of bovid community structure also suggests an open,
dry, grassland setting for the Wasiriya Beds. Alemseged (2003) con-
ducted correspondence analysis of abundance data from 29 African
game parks and demonstrated that, at the tribal level, bovid taxo-
nomic abundance distinguishes among open-dry, woodland, and
edaphic grassland habitats, providing a model to infer paleoenvir-
onment from fossil assemblages. In our correspondence analysis

(Fig. 7), the Wasiriya Beds bovids cluster with alcelaphine and anti-
lopine bovids from African parks characterized by open and dry
conditions: Nairobi (Kenya), Ngorongoro and Serengeti (Tanzania),
Omo (Ethiopia), Etosha (Namibia), and Kalahari (Botswana). The
Wasiriya Beds bovid abundances are also similar to other sites from
the Middle and Late Pleistocene: GvJm22 and GvJm46 from Lukenya
Hill, Kenya (Marean, 1992), levels 4—7 at Nasera rockshelter, Tanzania
(Mehlman, 1989, 1991), and to a lesser extent, Lainyamok, Kenya
(Potts and Deino, 1995), and Bed IIl at Mumba rockshelter, Tanzania
(Mehlman, 1989,1991). These game parks and fossil localities occurin
areas that today are substantially drier than Rusinga (Fig. 7). Impor-
tantly, the correspondence analysis (Fig. 7) also suggests that the
Wasiriya Beds assemblage differs substantially from Holocene
(~2—8 ka) faunas of the Lake Victoria region in western Kenya,
notably Gogo Falls (Robertshaw, 1991; Karega-Munene, 2002),
Luanda (Robertshaw et al.,, 1983), and Wadh Long’o (Lane et al., 2007;
Prendergast, 2008). Although now an island in a relatively semi-arid
to semi-humid region (500—1000 mm per annum; Pratt and
Gwynne, 1977), during the deposition of the Wasiriya Beds,
Rusinga may have been a local topographic high point in a more arid
grassland environment connected to the mainland. The extent to
which this arid grassland setting is related to the possible contraction
of Lake Victoria with reduced rainfall is currently uncertain.

Several other lines of evidence suggest that the Wasiriya Beds
sample environments and animal communities substantially
different from the present. The correspondence analyses show
a strong similarity between the Wasiriya Beds assemblages and
LGM strata from Lukenya Hill sites GvJm22 and GvJm46 (Marean,
1990; Miller, 1979) and Nasera rockshelter (Mehlman, 1989,
1991). Available radiocarbon age estimates and the presence of
MSA artifacts suggest that the Wasiriya Beds are older than the
LGM, but serve to stress the presence of taxa indicative of an arid
grassland environment among each of these assemblages. Pelorovis
and a small extinct alcelaphine bovid (cf. Damaliscus) occur at
Lukenya Hill and the Wasiriya Beds, and both became extinct
throughout sub-Saharan Africa with the return of relatively humid
conditions during the Holocene (Klein, 1980, 1984; Marean and
Gifford-Gonzalez, 1991; Marean, 1992). Like the Wasiriya Beds,
the fauna reported from the LGM strata at Nasera (Mehlman, 1989)
as well as Middle Pleistocene levels at Lainyamok (Potts and Deino,
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1995) include oryx and Grevy’s zebra, both beyond their historic
range, suggesting considerable range shifts in these arid-adapted
taxa. One consequence of range shifts is the formation of local
refugia, and the Megalotragus from the Wasiriya Beds probably
represents the last known occurrence of the genus in eastern Africa.
Middle-to-Late Pleistocene fossil occurrences of Megalotragus are
comparatively rare (cf. Harris, 1991), although in southern Africa its
last securely dated record is in Late Pleistocene deposits at Nelson
Bay Cave dated to ~ 16 ka (Klein, 1972, 1980), with an isolated tooth
reported from 7 ka deposits at Wonderwerk Cave (Thackeray, 1982;
Beaumont and Morris, 1990).

The gastropod evidence

Pickford (1986) reports the land snails Limicolaria sp., Burtoa sp.,
and Trochonanina sp. from the Wasiriya Beds encountered during
his wide-ranging survey across Rusinga Island. Our own more
limited survey identified only L. cf. L. martensiana which is locally
abundant at Nyamita and Wakondo. Shell pigmentation and
patterning are preserved on in situ specimens from tuffaceous
sediments (Fig. 3), aiding in identification to the species level (see
also Abbott, 1989). Today, Limicolaria species are widely dispersed
across Equatorial Africa including the Lake Victoria region, and
most of the known species (particularly in eastern Africa) live in
upland woodland or woodland-savanna habitats and feed on leaf
litter and new growth. Although the Lake Victoria region today
receives from 500—1500+ mm of rainfall each year (Pratt and
Gwynne, 1977), Limicolaria can occur in much more arid regions
with a minimum of ~300 mm of rainfall per annum, but with
prolonged periods of aestivation (Crowley and Pain, 1970; Haynes
and Mead, 1987; Pickford, 1995). Burtoa and Trochonanina also
both occur in woodland and savanna habitats in the Lake Victoria
region today (Pickford, 1995). Although none of the land snails
allow a precise paleoenvironmental reconstruction because of wide
habitat tolerances, the taxa recovered from the Wasiriya Beds are
consistent with a local fluvial setting within a savanna or grassland
environment. As we noted above in our discussion of tephra, the
gastropods may also significantly post-date the artifact- and fossil-
bearing strata.

Conclusions

Although long known for its rich deposits of Miocene fossils, our
recent investigations have demonstrated the paleoanthropological
potential of the Pleistocene Wasiriya Beds on Rusinga Island, Kenya.
Sediments of the Wasiriya Beds, particularly at the Nyamita and
Wakondo localities, sample a cut-and-fill sequence of fluvial sedi-
ments. Exposures at Nyamita and Wakondo include fallout and
reworked distal tephra deposits that can be correlated on the basis
of their geochemical composition as determined by electron probe
microanalysis. Multiple AMS radiocarbon age estimates on
gastropod shells indicate that these sediments pre-date the Last
Glacial Maximum (LGM), consistent with recovered artifacts and
fossils. Surface and in situ stone artifacts from Nyamita and
Wakondo include a small, bifacially flaked point and unmodified as
well as retouched Levallois flakes, consistent with a Middle Stone
Age (MSA) attribution. A taxonomically diverse fossil fauna that
includes at least one cut-marked specimen is associated with these
artifacts, which is unusual among eastern African MSA sites. The
fauna indicates environments substantially more arid than the
present, and includes a number of extant forms beyond their
current range (oryx and Grevy’s zebra), as well as taxa largely
extinct in sub-Saharan Africa by the Holocene, such as Pelorovis
antiquus, Megalotragus sp., and a small, unnamed extinct alcela-
phine bovid.

Rusinga’s position within a biogeographically important region
characterized by shifting floral and faunal communities make it
a key location for understanding the complex dynamics of envi-
ronmental variability, dispersal, and biological and behavioral
diversity among Equatorial African hominins that included
H. sapiens. Our continued research on Rusinga focuses on employ-
ing a multi-proxy approach to test the hypothesis of past aridity
inferred from collected fossils, constructing a detailed chronolog-
ical framework, broadening the sample of archaeological traces,
and better understanding the depositional and taphonomic histo-
ries of artifact and faunal accumulations. These data should allow
us to begin to document the timing of pre-LGM periods of aridity in
the Lake Victoria region relative to the contrasting patterns of
climate variation recorded in sedimentary archives in adjacent lake
basins to the east and south (cf. Trauth et al., 2001, 2003; Cohen
et al., 2007; Scholz et al., 2007), and to understand the role of
climate change in shaping local environments and hominin
populations.
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