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Border Cave revisited: a revised ESR
chronology

In view of a decade of progress in ESR dating we have revised the
ESR chronology of Border Cave. A detailed gamma ray survey in
1994 and newly calculated beta attenuation data led to total dose rate
estimations that are between 0 and 30% smaller than previously
estimated. Accordingly, the resulting ESR age estimates are between
0 and 30% older. The ESR dates are now in good agreement with
independent age estimates, particularly '*C and amino acid racemi-
zation. New ESR dates for the lowermost dated sedimentary layer,
5 WA (white ash), indicate that the sedimentation of the sequence
started around 200 ka ago.
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Introduction

In 1990 we published a detailed ESR chro-

Since 1990, the following has changed in
ESR data evaluation:
(1) The fitting of the dose-response curve

nology on tooth enamel samples recovered
from the sedimentary sequence at Border
Cave (Grin et al., 1990). Although ranging
between 28 and 140 ka, the results were
disputed because the ESR data were some-
what younger than expected (e.g., Miller &
Beaumont, 1989).

There are a number of reasons for
re-assessing the 1990 data. First of all, the
dataset represents the most detailed ESR
sequence published so far. Furthermore, the
site is ideally suited for ESR dating, because
no samples contain significant amounts of
uranium. Thus, differences caused by mod-
elling U-uptake are virtually negligible (for
details on ESR age modelling see Griin,
1989). Border Cave is therefore an ideal test
case for ESR dating. Figure 1 shows a site
plan of the archaeological excavations.
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is now carried out with a more appro-
priate algorithm and errors are calcu-
lated with an analytical method
(Brumby, 1992). The data points are
weighted inversely proportional to the
ESR intensity. These procedures were
confirmed to be appropriate by com-
puter simulation (Grin & Brumby,
1994) and reproducibility tests (Griin,
1998a). The previously applied fitting
procedures, which are based on equal
weights and jack-knifing error calcula-
tion (Grin & Macdonald, 1989), lead
to marginally different dose estima-
tions (usually within a few percent, see
below) but to errors which are much
too large (Griin & Brumby, 1994). It
was not possible to use the spectra for
more sophisticated spectrum analysis,
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Figure 1. A plan of Border Cave showing the extent of the clearance in 1987, the location of Excavations
1 to 4, and the grid localities of hominids BC3 to BC5.

(2)

e.g., deconvolution (Gran, 19985) or
maximum likelihood common factor
analysis (Vanhaelewyn er al., 2000),
because at the time of measurement,
the ESR spectrometer was not
equipped with digital data recording.
However, a comparison of different
methods of dose evaluation shows that
the peak-to-peak measurements used
in this study yield, in most cases, stat-
istically indistinguishable results from
more computing intensive methods
(Griin, 2000a, 20015).

The gamma dose rate was measured in
1988 at only a few places in the cave.
The dose rates for some layers were
obtained by interpolation. In 1994, we
carried out a detailed gamma survey of

(3

the cave. It showed that the earlier
measurements were reproduced but
some layers have a more complex
gamma ray distribution than originally
supposed.

In 1997, Yang carried out experiments
for assessing beta attenuation factors.
These new factors are in very good
agreement with calculations based on
One Group Theory as well as Monte
Carlo simulations (see also Brennan
et al., 1997, 2000; Yang er al., 1998).
The main implication for ESR dating
is that the new attenuation factors are
significantly smaller than those experi-
mentally determined by Aitken er al.
(1985) and calculated by Grin
(1986).
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(4) In 1998, Adamiec & Aitken published
new dose rate values for radioisotopes
which are slightly different from those
of Nambi & Aitken (1986).

For further details of ESR dating see recent
reviews by Ikeya (1993), Grin (1997,
2000b,¢,d, 2001a) and Rink (1997).

Results

The analytical details of the re-assessment of
the ESR chronology of Border Cave are
given in Table 1. As mentioned above, there
is virtually no difference between early
U-uptake (EU) and linear U-uptake (LLU)
age calculations, and most differences are
attributable to rounding. In this paper
only the EU age estimates are further
discussed.

Dose evaluation

Figure 2 shows the dose and error estima-
tions using the two different procedures. All
dose values, except for sample 603A, agree
within error [Figure 2(a)]. In Figure 2(b),
the errors are removed for clarity. A linear
regression of the dose pairs results in
virtually in a 1:1 relationship, thus, the
re-evaluation of the dose values has a negli-
gible effect on the calculated ages. Figure
2(c) compares the different error proce-
dures. It shows that the jack-knifing errors
are always larger than the errors derived
from analytical expression (except for
sample 603A). This is expected from the
computer simulations (Grin & Brumby,
1994). Reproducibility tests have shown
that the analytical expression using weights
inverse proportional to the squared intensity
yields errors which are most appropriate for
the dose estimation using tooth enamel
powder samples (Griin, 1998a).

Gamma dose rate
Figure 3 shows the measured gamma dose
rates which tend to decrease from the back
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wall towards the cave mouth. This may be
attributable to the fact that the number of
artefacts increase in the same direction, i.e.,
the sedimentary composition of the layers
changes. Most of the measurements were
carried out in strips T to U of Excavation 3A
(see Figure 1). The previous gamma
measurements show exceptionally good
agreement with the newer survey, although
first, different equipment was used: a three-
channel Harwell spectrometer in 1988, cali-
brated for U, Th, and K separately with a
3 x 3 inch Nal detector, and a multichannel
Canberra Packard spectrometer in 1994
calibrated for total dose rate using a 1 X 2
inch Csl detector. Second, some of the
earlier measurements were carried out
further to the north in strips N and O.

It can be seen from Figure 3 that the
gamma dose rate decreases downward from
layers 1BS towards 4WA, but then starts to
increase again in the layers below 4WA.
Furthermore, 4WA has significantly lower
dose rates at the top than at the base. For
age calculation, the gamma dose rate values
of a distinctive layer were fitted with a linear
function and the dose rate values for a
particular strip (13 to 24) were obtained by
interpolation. The grid for the location
of the samples is shown in Figure 1.
Most of the original measurements were
carried out in the back of the cave (strips 20
to 24) whilst most of the samples were
collected from strips 14 to 17. Therefore,
the gamma dose rate values used in
the earlier calculations were somewhat
too high.

Figure 4(a) shows the comparison of the
gamma dose rates used in the previous age
calculation and in the revised set. Particu-
larly large deviations occur for unit 4WA
and 1RGBS. Originally, no measurement
was carried out in 4WA and the data from
4BS and 5BS, which are very close, were
averaged to obtain the dose rate for 4WA.
As mentioned above, the gamma dose rate
distribution of 4WA is complex and
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Figure 2. Comparison of revised dose [(a) and (b)] and error calculations (c). The new dose estimates
were obtained with simplex fitting optimization using weights inverse proportional to the squared intensity
and error calculation derived from analytical expressions (after Brumby, 1992; for more details see Griin
& Brumby, 1994; Griin, 1998a). The older dose estimations were also based on simplex optimization
procedures using equal weights and error calculation was derived from jack-knifing (Griin & Macdonald,
1988). In (b), the error bars are removed for clarity. A linear regression of the data (dotted line in b) is
nearly indistinguishable from the 1:1 line (solid one). The jack-knifing error of all but one sample is
significantly larger than the error derived from analytical expression (c).

measurements have to be carried out close
to the samples. For 1RGBS, no gamma
measurement was carried out. This unit is
part of 4BS and a similar gamma dose rate

could be expected. However, the analytical
values for the sediment linked to sample 601
imply a significantly higher dose rate. Thus,
in this study the gamma dose rate was
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Figure 3. Results of the 1994 gamma survey. The distribution of the gamma dose rates is complex. There
is a general trend of decreasing gamma dose rate from the back-wall of the cave towards the mouth. 4WA
shows the largest variation within the layer by having significantly higher gamma dose rate values at the
base (see strips 16 and 17). The new measurements were carried out in strips S and T [for positions of the
strips (12 to 24) see Figure 1]. There is a very good agreement between the 1994 and 1988 measurements
although different gamma spectrometers were used and several of the older measurements were carried

out in strips N and O.

averaged from the analytical values of the
sediment sample and the gamma dose rate
derived from layer 4BS. One should note,
that there are also larger discrepancies
between the analysis of the sediment and
measured gamma dose rates for layers 5BS
and 5WA and this may be the cause of some
of the large scattering of age results observed
from the samples from these layers.

Beta dose rates

Beta dose rates were calculated using the
Monte Carlo attenuation curves presented
by Brennan ez al. (1997). This leads to much
smaller external beta dose rates. Figure 4(b)
shows the comparison of the earlier and
revised beta dose rates. The data were fitted
with a straight line (forced through zero)
which shows that the older beta dose rates
are on average 60% higher than those based
on Monte Carlo attenuation factors.

Dose rate conversion factors
The new dose rate conversion factors of
Adamiec & Aitken (1998) show the largest

change (—4%) in the beta dose rate from K;
the overall effect of the re-calculated dose
rates on the total dose rate is negligible
(<1%).

Total dose rates and age estimations

Figure 4(c) shows the comparison of total
dose rates. The differences between the
older and revised total dose rates translate
directly into age differences, because the
average dose estimations (Figure 2) have not
changed. The changes in dose rates range
between zero and about —30% (with an
average of — 15%).

Comparisons with other chronologies

Figure 5 shows the revised chronology for
Border Cave. Figure 5 also includes samples
753 and 754 from 5WA which were ana-
lysed after the original study of Griin er al.
(1990). Samples from Border Cave
were also analysed by a variety of other
dating techniques, particularly radiocarbon
(Beaumont, 1980) and amino acid racemi-
zation (Miller ez al., 1999), see Table 2. The



BORDER CAVE REVISITED

a

1BS LRI
1 WA up -
1WA2 -
2BSup -
2 BS LRCH

475

2WA
3BS1
3BS2
3BS3
3 WA
1RGBS
4 BS
4WA1

o
- [e] *

111
o
L 2K 2R J

L1 1.1
(o]
[o]
*
‘s
(o]

4WA6 -
4WA7
5BS2
5BSS
SWA1
SWA2

L 2K 2% J

o * ©  Revised Gamma Dose Rate

o ¢ Previous Gamma Dose Rate

1000

1100

1200 1300 1400 1500
Gamma Dose Rate (uGy/a)

1600 1700

1000~

800
600
400

200

Previous Beta Dose Rate (uWGy/a)

——y=1637x R=0.98511

0

0 -+ ————

100

200 300 400 600

Revised Beta Dose Rate (uGy/a)

500

2500

2000

1500

1000

W
[=
[=]

T R U BN RN

Previous Total Dose Rate (UGy/a)

o
o

T
500

LA BN Al Bt A S B B B RN B S S B S A B SR

1,000 1,500 2,000 2,500
Revised Total Dose Rate (UGy/a)

Figure 4. (a) The revised gamma dose rates are throughout lower than in the previous study, because most
of the 1988 measurements were carried out closer to the back-wall (see Figure 3). The beta dose rates have
a very high correlation but the older calculations yielded 60% higher dose rate values (b). The total dose
rates are on average 15% lower than in the previous study, resulting in a corresponding age increase (c).
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Table 2 Comparison of ESR data with independent age estimates of Beaumont (1980) and Miller et al.

(1999)
14C 14c AAR Revised

Unit (Beaumont) (Miller) (Miller) ESR

1BS. LR 33-38 38+1 33+ 1ka
1WA 33-45 38-40 35-42 ka
2BS. UP 43->49 >49 47+5 41 +2ka
2BS LRC 56+ 6 48 + 1 ka
2WA 69+£7 63 + 2 ka
4BS/4 WAl >100 80-122 ka

AAR=amino acid racemization.

ESR results are compatible with most of the
radiocarbon results reported by Beaumont
(1980). In comparison with the data of
Miller er al. (1999), the revised ESR chro-
nology agrees within error but seems sys-
tematically on the young side. One has to
keep in mind, however, that first, many
horizons are presented by a single tooth for
ESR, and second, for the radiocarbon chro-
nology usually only the oldest age estimates
were used for assessing the age of a horizon.
While the latter procedure is based on the
assumption that any younger radiocarbon
results are caused by recent CO, exchange,
age spread could also be attributable to
reworking processes. Reworking would, of
course, also apply to some of the ESR results
(which may have caused, e.g., the age spread
of the tooth enamel fragments of sample 603
in 4WA6).

Discussion of new and revised ESR
data

The major points of contention that arose
from the 1990 ESR chronology are:
(1) the ESR results were significantly
younger than the radiocarbon data on
the same layers (Beaumont, 1980);
(2) the ESR results were significantly
younger than the amino acid chronol-
ogy (Miller & Beaumont, 1989);

(3) the age for the Howieson’s Poort
industry was too young and its dura-
tion too long (e.g., Beaumont et al.,
1978).

The comparison of the revised ESR dataset
with independent chronologies now shows
good agreement. The revised ESR readings
now provide a chronological framework for
Border Cave that is in broad agreement with
results obtained by way of radiocarbon,
U-series, amino acid epimerization (see
Beaumont er al., 1978, 1992; Beaumont,
1980; Miller & Beaumont, 1989; Miller
et al., 1999) and unpublished TL assays
on burnt opalines by Huxtable & Valladas
(personal communications to P.B.B.).

Chronology for the human remains

The ESR dates are not relevant for the Iron
Age BC4. BC6 to BC8 were recovered by
trowelling away about 100 m> of disturbed
deposit formed since 1934 (Beaumont,
1994). These specimens consist of a
humerus (BC6), a proximal ulna (BC7) and
two metatarsals (BC8a & b) and have been
described by Morris (1992), Pearson &
Grine (1996) and Pfeiffer & Zehr (1996).
However, it is difficult to establish the prov-
enance for BC6 to BC8. Thus, we have
refrained from speculation about their
antiquity. The revised ESR dates have the
following implications for the ages of the
other human remains at the site.
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BC1 and BC2

BC1 and BC2, an incomplete cranial vault
and a partial mandible respectively, are both
unprovenanced specimens from Horton’s
Pit, of which the former has been linked to
the “‘soft dark earth’ of the 4BS on the basis
of comparable soil adhesions in the small
interstices of the skull (Cooke er al., 1945).
However, slumped sediment removal in
1987 led to the discovery that the 4WA-
5WA sequence had been removed to varying
extents towards the centre of Horton’s Pit
(Figure 1), thereby contravening a 1942
claim that the 4WA formed its base
(Beaumont, 1980) and implying that BC1
may have come from the very similar 5BS,
as is suggested by its very low nitrogen
readings (Beaumont, 1994; Sillen & Morris,
1996). The strata 4WA.C to 5WA now have
ESR ages of from about 145 to 230 ka and
concordant unpublished TL readings by
J. Huxtable (personal communication) of
about 165 to 180 ka for 4WA.C and about
180 ka for 5WA. Proxy palaeoenviron-
mental evidence (Avery, 1992) implies that
these layers would be best placed in oxygen
isotope stage 7. However, the exact prov-
enance of BC1 and BC2 (whether derived
from 4BS or 5BS) can only be established by
precise, direct dating analysis, possibly com-
bined Th/U-Pa/U dating (see Cheng &
Edwards, 1998; Simpson & Griin, 1998).

BC3

This infant skeleton from the 1941 excava-
tion came from a >0-24 m deep grave strad-
dling squares F12 and G12 that was entirely
cut into the 4BS, with its lip reported as
undoubtedly lying below an ash horizon at
the very base of the Howieson’s Poort
sequence (Cooke ez al., 1945). An examina-
tion of the lithic samples from squares F12
and G12 revealed that the spits overlying the
grave contain only artefacts (including seg-
ments) of Howieson’s Poort ascription, with
there being no trace of the expected 1BS and
4BS-derived admixture if it had been intru-
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sive (Beaumont, 1994). The sole object in
definite association with BC3 was a perfor-
ated Conus seashell (Cooke er al., 1945),
later identified as C. bairstow: (Beaumont
et al., 1992), a species now endemic to a
stretch of eastern Cape coast about 760-
980 km to the south west (Richards, 1981;
Kilburn & Rippey, 1982). This finding
implies, in the absence of evidence of such
distant trade in stone age times, that the
shell was collected from a Tongaland beach
about 80 km away during a stadial when
Indian Ocean temperatures were much
cooler than now, resulting in that species
having a distribution about 5-6° closer to
the equator (Beaumont ez al., 1992). Amino
acid analysis of the BC3 pendant, and of an
identical and probably iz situ specimen that
was recovered from the IRGBS.UP in
square Cl1 during fieldwork in 1987
(Beaumont, 1994), produced almost identi-
cal alle/Ile ratios (B. Johnson, personal com-
munication). Subsequent AMS dating of a
portion of the former produced, given
the material, a good minimum reading
33,570 + 120 BP (AA-14033). If so, then
BC4 was buried at that time of the deposi-
tion of IRGBS and its ESR age is about
76 ka (Figure 5).

BCs5

This largely complete lower jaw (BC5) was
recovered by C. Powell in 1974 from the
northwest edge of square T20, while she and
one of us (PBB) were collecting sediment
samples, at the request of K. W. Butzer,
from the south face of Excavation 3A
(Figure 1). It was located some 0:25m
below the intact surface of the 3WA and
abutted on a previously mapped and photo-
graphed depression, with rather poorly
defined edges and a depth of up to 015 m,
at the very base of that stratum. The exca-
vation of square T20 about 6 months later,
and of T21, U20 and U21 by G. Miller in
1987, permitted the full extent of this 1-8 m
wide sub-circular feature to be traced
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(Figure 1), but, unexpectedly, no further
human remains were found in it.

Detailed analysis of the artefact types,
their numbers, orientations and dips, pro-
portion of opaline artefacts, contents of
macrofaunal and charcoal fragments, as well
as '*C and U-series age results show that
square T20 displays the same distinctive
patterns as nearby undisturbed layers
(Beaumont, unpublished data). This seems
to rule out that BC5 could have been buried
from an Iron Age layer (as implied by the
study of nitrogen contents and infra-red
splitting factors by Sillen & Morris, 1996). If
BC5 was indeed buried at the time
when layer 3WA was deposited, its age is
about 66 ka. Direct ESR measurements
on an enamel fragment (Grin, 1995;
Robertson & Griin, 2000) from BC5
could lay the question of its provenance
conclusively to rest.

Implications

Given the age of 5BS and the consequent
early H. sapiens affinities of BC1 and BC2
(de Villiers, 1973, 1976) and also perhaps
BC6 (Pearson & Grine, 1996), this would
tentatively support the inference that
humans of fully modern cranial form had
already occupied some subtropical portions
of the subcontinent by before 130 ka. The
persistence of populations with some archaic
features long after then in the southern Cape
(Smith ez al., 1989) could then be seen as
support for the postulate that the formative
phases of modern human evolution
were confined to the savannas, sensu lato
(Beaumont ez al., 1978), and perhaps even
to a southern portion of it (e.g., Gibbons,
1997). In this case present evidence bearing
on the genesis of our kind would be sparse,
and it bears reiterating (Beaumont, 1980)
that a firmer focus on fieldwork in appropri-
ate regions is called for (e.g., Yellen ez al.,
1995), as also further efforts to more firmly
date the few known early humans from that
biome, particularly BC1 and Omo 1.
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Timing and duration of the Middle and Later
Stone Age industries

The new ESR chronology is more compat-
ible with '*C ages for the Early LSA occu-
pation pulse (e.g., Wintle, 1996), that could
be related to a palaeoclimatic amelioration
coeval with Dansgaard-Oeschger event 12 at
about 42 to 44 ka (Bischoff ez al., 1994;
Blunier ez al., 1998). In a recent compilation
of amino acid racemization data from
Boomplaas, Apollo 11 and Border Cave,
Miller ez al. (1999) concluded that the age of
the Howieson’s Poort industry was brack-
eted by limiting dates of 56 and 80 ka and
was most likely centred on 66 £+ 5 ka. The
revised dataset confirms this estimate with a
time span of between 60 and 79 ka (these
boundaries also consider the ages of the
over- and underlying layers). However, the
duration of the Howieson’s Poort seems
somewhat longer (around 20 ka) than usu-
ally assumed (around 10 ka: Beaumont et
al., 1978; Deacon, 1989). Concordant ESR
and TL readings for 4WA.C and 5WA now
show with reasonable certainty that the low-
ermost MSA levels (without handaxes) at
Border Cave extend beyond about 195 ka
(Butzer et al., 1978) to perhaps basal oxygen
isotope stage 7 in the as yet undated 6BS
(for duration and boundaries of oxygen iso-
tope stages (see Martinson er al., 1987;
Shackleton ez al., 1990).

Palaeoclimatic information

The new ESR readings also corroborate that
a higher than present temperature and a
>3° southward shift of miombo woodland
previously inferred for 4WA.A&B micro-
faunal samples (Avery, 1992) does indeed
equate (Beaumont er al., 1992) with oxygen
isotope stage 5e¢ at about 129 to 119 ka ago
(Adkins er al., 1997).

The chronometric results as a whole
identify four hiatuses, at the 4WA.A.B-C,
4BS-4WA and 2BS.LR.C-2WA interfaces,
and also near the surface of IBS.LR.A
(Beaumont er al., 1978), in an otherwise
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seemingly continuous sequence that is divis-
ible into two broad sediment formation
settings. The earlier, from 6BS—4WA,
represents two successive full interglacials
(oxygen isotope stages 7 and 5e), formed
when temperatures were similar to now and
rainfall was about 125-200% higher, with
an outside cover dominated by miombo
woodland that sustained high occupation
densities of about 3100-8600 lithics per m>
(Avery, 1992; Beaumont ez al., 1992). The
later, from 4BS-1BS.LLR.A, built up under
the less congenial conditions of late oxygen
isotope stage 5 to 2 when temperatures were
cooler than now and rainfall was up to 65%
lower, with an outside cover having a higher
grassland component that sustained lower
occupation densities of about 200-2300
lithics per m> (Avery, 1992; Beaumont ez al.,
1992).

Conclusions

We draw the following conclusions from this
study:

(1) The revised ESR readings now provide
a chronological framework for Border
Cave that is in broad agreement with
results obtained by radiocarbon,
U-series, amino acid epimerization
and unpublished TL assays on burnt
opalines by Huxtable and Valladas.

If BC3 and BC5 are i siru their
ESR ages are about 76 and 66 ka,
respectively.

(3) New sedimentological studies imply
that BC1 may have come from 5BS.
Thus, modern humans could have
occurred in southern Africa as early as
170 ka ago. On the other hand, if BC1
and 2 were derived from 4BS, their
ages would be around 82 ka.

The results of this study and the con-
troversy about the origin of the human
remains at Border Cave, particularly of
BC5 (Sillen & Morris, 1996), reiterate
the urgent necessity to further develop

(2)

(4)
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and apply direct dating to the human
remains.

The ESR results confirm the great
antiquity (between 60 and 79 ka) of
the Howieson’s Poort-bearing strata.
However, the duration of the Howi-
eson’s Poort seems somewhat longer
(around 20 ka) than usually assumed
(around 10 ka: Beaumont ez al., 1978;
Deacon, 1989). The MSA/LSA tran-
sition can be placed at about 41 ka and
the lowermost MSA levels extend
well beyond 200 ka, perhaps to the

(5)

beginning of the  penultimate
interglaciation.
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