
Endocranial Capacity of the Bodo Cranium Determined From
Three-Dimensional Computed Tomography

GLENN C. CONROY,1* GERHARD W. WEBER,2 HORST SEIDLER,2
WOLFGANG RECHEIS,3 DIETER ZUR NEDDEN,3
AND JARA HAILE MARIAM4

1Departments of Anatomy and Neurobiology/Anthropology, Washington
University School of Medicine, St. Louis, Missouri 63110
2Institute of Human Biology, University of Vienna, A1091
Vienna, Austria
3Department of Radiology II, University of Innsbruck, A-6020
Innsbruck, Austria
4Office of Conservation and National Heritage, P.O. Box 13247 Addis
Ababa, Ethiopia

KEY WORDS computed tomography; Homo heidelbergensis; en-
docranial capacity; brain evolution

ABSTRACT The 600,000-year-old cranium from Bodo, Ethiopia, is the old-
est and most complete early Middle Pleistocene hominid skull from Africa.
“Virtual endocast” models created by three-dimensional computed tomography
(CT) techniques indicate an endocranial capacity of about 1,250 cc for this
cranium (with a reasonable range between ;1,200–1,325 cc, depending on how
missing portions of the basicranial region are reconstructed). From these deter-
minations, several important implications emerge concerning current interpre-
tations of “tempo and mode” in early hominid brain evolution: 1) already by the
early Middle Pleistocene, at least one African hominid species, Homo heidelber-
gensis, had reached an endocranial capacity within the normal range of modern
humans; 2) in spite of its large endocranial capacity, estimates of Bodo’s enceph-
alization quotient fall below those found in a large sample of Homo sapiens (both
fossil and recent) and Neandertals; and 3) the greatest burst of brain expansion
in the Homo lineage may not have been in the last several hundred thousand
years, but rather much earlier in the Lower to early Middle Pleistocene. Am J
Phys Anthropol 113:111–118, 2000. © 2000 Wiley-Liss, Inc.

The Bodo cranium is the oldest and most
complete representative of an early Middle
Pleistocene hominid cranium from Africa
(Conroy et al., 1978; Conroy, 1980). Samples
from several different vitric tephra horizons
(feldspars) within the hominid-bearing Up-
per Bodo Sand Unit have been dated by
laser-fusion 40Ar/39Ar techniques to 0.64 6
0.03 Ma (million years), i.e., roughly con-
temporaneous with upper members of the
Olorgesailie formation in Kenya (Clark et
al., 1984). Archeological and paleontological
evidence is also consistent with an early
Middle Pleistocene age for the cranium
(Kalb et al., 1982; Kalb, 1993).

The cranium was found in 1976 during
paleontological, archeological, and geologi-
cal surveys conducted by the Rift Valley Re-
search Mission in Ethiopia headed by Jon
Kalb. A separate hominid parietal bone was
later found in 1981, and a distal humerus
fragment was recovered in 1990 (Asfaw,
1983; Clark et al., 1994). While the Bodo
cranium and isolated parietal bone come
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from very robust individuals, the humerus
is appreciably smaller than in many modern
humans, suggesting that these early Middle
Pleistocene Bodo hominids may have been
quite sexually dimorphic in overall body
size.

Bodo is associated with Acheulean arti-
facts, including relatively well-made bifa-
cial handaxes and cleavers (Kalb et al.,
1982; Clark et al., 1994). Interestingly,
while a local shift from Oldowan to
Acheulean tools occurred within Ethiopia’s
Middle Awash sequence about this time, a
similar shift in tool types occurred else-
where in Africa nearly one million years
earlier (Asfaw et al., 1992). A particularly
notable aspect of the Bodo cranium is the
identification of cut marks that closely re-
semble those caused by cutting fresh bone
with stone tools. While hominid-produced
cut marks on animal bone may date back
some 2.5 million years in Ethiopia (de
Heinzelin et al., 1999), the cut marks on the
Bodo cranium may be the first documented
evidence of intentional postmortem deflesh-
ing of human bone in the hominid fossil
record (White, 1986).

The Bodo cranium consists of an almost
complete face (particularly on the left) and
partial neurocranium, as well as part of the
basicranium anterior to basion (Conroy et
al., 1978; Conroy, 1980; Rightmire, 1996,
1998). Bodo shares a number of craniofacial
similarities with H. erectus, including a low
braincase, broad and robust facial skeleton,
thickened cranial bones, projecting and
heavily constructed supraorbital tori, and
midline frontal bone keeling extending to
bregma. It is, however, most similar in over-
all appearance to other later archaic Middle
Pleistocene Homo crania like those from Ka-
bwe (Broken Hill), Petralona, and Arago 21.
It seems more archaic-looking than the
Homo crania from Ethiopia’s Kibish Forma-
tion and Eritrea’s Danakil region (Abbate et
al., 1998).

Recently, some workers (but certainly not
all) have lumped Bodo with varying combi-
nations of other Middle Pleistocene homin-
ids from Africa (e.g., Elandsfontein, Lake
Ndutu, Kabwe, and Eyasi) and Europe (e.g.,
Mauer, Arago, Petralona, Atapuerca (Sima
de los Huesos), Steinheim, Bilzingsleben,

Vertesszöllös, and Swanscombe) in the spe-
cies H. heidelbergensis (these same fossils
are often referred to as “archaic” H. sapi-
ens). At present, there are still unresolved
questions about the makeup of H. heidelber-
gensis. Some workers suggest that the com-
bined European/African H. heidelbergensis
sample may represent a single lineage an-
cestral to both Neandertals and later H.
sapiens (e.g., Rightmire, 1996, 1998),
whereas others suggest that the European
sample may be a separate lineage ancestral
only to Neandertals (e.g., Arsuaga et al.,
1993, 1997). These contrasting views of the
role of H. heidelbergensis in Middle Pleisto-
cene human evolution are reviewed in
Rightmire (1998).

The Bodo cranium (and possibly OH 12
and Saldanha) is the only representative of
an early Middle Pleistocene African homi-
nid for which a reasonably accurate en-
docranial capacity estimate can be deter-
mined (specimens such as Kabwe and
Florisbad are estimated to be some
300,000–500,000 years younger, as are the
European cranial samples from Atapuerca,
Petralona, and Steinheim). Indeed, in Africa
there is a fossil gap of some half-million to
one million years between the earliest
Homo species like H. habilis (e.g., OH 24,
KNM-ER 1813), H. ergaster (e.g., KNM-ER
3883, 3733, OH 9), and H. rudolfensis (e.g.,
KNM-ER 1470), and H. heidelbergensis (5
“archaic” H. sapiens, e.g., Bodo).

MATERIALS AND METHODS

The accuracy and reliability of three-di-
mensional (3D) CT for safely and noninva-
sively studying endocranial capacity in rare
early hominids are well-established (Conroy
and Vannier, 1985; Conroy et al., 1990,
1998; Seidler et al., 1997; Weber et al., 1998;
Zollikofer et al., 1998). To evaluate Bodo’s
endocranial capacity, transaxial CT scans of
the original Bodo specimen were taken at
the Radiology Department, University of
Innsbruck, Austria, using a Siemens Somo-
tom Plus S40 CT scanner. CT scan param-
eters were: 1-mm slice thickness, 120 kV,
163 mA, 512 3 512 matrix, 12-bit gray
scale, 0.4902-mm pixel size. The 3D recon-
structions were obtained by postprocessing
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the CT data using a Silicon Graphics Work-
station running ANALYZE™ software.

Because the cranium is incomplete, “miss-
ing” parts were first mirror-imaged from in-
tact contralateral pieces, and then rotated
and translated to fit preserved cranial con-
tours. The 3D reconstruction steps were as
follows. First, a three-dimensional, geomet-
rically accurate rendering of the original
Bodo cranium was produced from the CT
scans (Fig. 1a). Second, this 3D rendered
cranium was divided into three separate ob-
jects that could be independently moved on
the computer screen: 1) face; 2) midcranial
region; and 3) posterior cranial region.
Third, the left side of the face, being virtu-
ally complete, was mirror-imaged to pro-
duce a geometrically accurate full 3D facial
view. The accuracy of this facial reconstruc-
tion was tested against known facial dimen-
sions on the original cranium. Fourth, the
more complete left lower parietal and tem-
poral area of the midcranial region was mir-
ror-imaged and aligned with the previously
rendered, and geometrically accurate, 3D
facial segment. Fifth, the more complete
right upper parieto-occipital region was
mirror-imaged and aligned with the previ-
ously rendered and aligned 3D midcranial
region. By such repeated mirror imaging,
Bodo’s cranium could be visualized using
the maximal cranial information, regardless
of which side the original pieces were on.
The final “virtual cranium” is shown in Fig-
ure 1b.

RESULTS

From Bodo’s “virtual cranium,” “virtual
endocasts” were created using techniques
described elsewhere (Fig. 1c) (Conroy and
Vannier, 1985; Conroy et al., 1990, 1998;
Seidler et al., 1997; Weber et al., 1998). This
was relatively straightforward except in the
missing basicranial region posterior to ba-
sion. Because of the uncertainty of precise
cranial contours in this region, several “vir-
tual endocasts” were produced, using
slightly different cranial contours. Once
each “virtual endocast” was created, its vol-
ume could be calculated directly from the
ANALYZE™ program. In each case, Bodo’s
“virtual cranium” was rendered transparent

in order to show the “virtual endocast” in
situ (Fig. 1c).

Our various “virtual endocast” determi-
nations averaged out to ;1,250 cc, with a
low value of ;1,200 cc and a high value of
1,327 cc, depending on the basicranial con-
tours used for the model.1 The “virtual en-
docast” in Figure 1c has a volume of 1,248
cc. A value in the low to mid-1,200 cc range
seems most likely in light of a second ap-
proach to endocranial capacity determina-
tion. Using our 3D-CT data of both the Bodo
and Kabwe crania, we created a “virtual
wall” orthogonal to the median-sagittal
plane through bregma and basion, and then
calculated the anterior endocranial capacity
in both specimens (this did not involve mir-
ror-imaging of any cranial pieces). The re-
sulting anterior endocranial capacity was
;402 cc in Bodo and ;432 cc in Kabwe.
Assuming similar proportions between an-
terior and total endocranial capacity in
these two crania, this method would predict
Bodo’s total endocranial capacity to be
somewhat less than Kabwe’s published
value of 1,270 cc.

DISCUSSION

Several interesting implications emerge
from this study. First, it is informative re-
garding the sometimes dramatic affect that
inclusion or exclusion of a single fossil may
have on interpretations of “tempo and
mode” in early H. sapiens (5 heidelbergen-
sis) brain evolution. For example, the view
that early H. sapiens was characterized by a
high evolutionary rate of change in endocra-
nial capacity may need reevaluation. The
addition of Bodo (using a value of 1,250 cc)
to one commonly used data set relating en-
docranial capacity to geologic time in “ar-
chaic” H. sapiens (Table 3 in Leigh, 1992)2

reduces the slope of the best-fit line reflect-
ing evolutionary rate of brain size increase
in early H. sapiens from a very steep value

1This is in general agreement with R. Holloway’s estimate of
;1,300 cc cited as a personal communication in Rightmire
(1996), and much smaller than the 11,500 cc estimate of Adefris
(1992). It is also a slight modification of our earlier estimate in
Conroy et al. (2000).

2The cranial capacity for Sangiran 4 in Table 1 in Leigh’s data
set should be 908 cc, not 808 cc (S. Leigh, personal communica-
tion).
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Fig. 1. (See legend page 115.)
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of 2864 to a much more modest value of
2353, reduces the R2 value from 0.61 to
0.22, and changes the P-value for slope (rate
of change) from ,0.007 to 0.14 (Fig. 2).

Without the inclusion of Bodo, one might
have interpreted the above-mentioned data
set as suggesting a “punctuated equilib-
rium” event in brain size evolution between
H. erectus and “archaic” H. sapiens, since an
analysis of covariance for homogeneity of
slopes between these two taxa approaches
statistical significance (P 5 0.056) (Fig. 2).
However, inclusion of Bodo’s endocranial ca-
pacity and geologic age into this data set
changes this interpretation dramatically:
using an endocranial capacity value of 1,250
cc gives highly nonsignificant values for ho-
mogeneity of slope (P 5 0.40). In other
words, with Bodo in the data set, one might
conclude that there has been a gradual,
rather than punctuational, change in brain
size between H. erectus and “archaic” H.
sapiens, since one cannot reject the hypoth-
esis of homogeneity of slopes between these
two taxa.

Second, Bodo’s cranial capacity of ;1,250
cc is evidence that by the early Middle Pleis-
tocene, at least one African hominid species,
H. heidelbergensis, had reached an endocra-

nial capacity well within the range of nor-
mal modern humans. Mean endocranial ca-
pacity from over a dozen widely distributed
modern human samples ranges from 1,147–
1,505 cc (cranial capacity translated from
brain mass means of 1,111–1,450 g, using
the formula: brain mass 5 1.147 3 cranial
capacity0.976) (Pakkenberg and Voigt, 1964;
Martin, 1990; Smith et al., 1995; Falk et al.,
1999).

Third, by using estimates of body weight
predicted by orbital aperture area (Kappel-
man, 1996) and the formula Encephaliza-
tion quotient (EQ) 5 brain mass(g)/(11.22 3
body mass (kg)0.76), Bodo’s EQ would be
;3.6, based on a predicted body mass of
87,265 g and a predicted brain mass of 1,208
g (5 cranial capacity of 1,250 cc) (Martin,
1981; Ruff et al., 1997). Using the lower 95%
confidence limit of Bodo’s predicted body
weight (80,311 g), EQ would equal ;3.8;
using the upper 95% confidence limit of
Bodo’s predicted body weight (171,138 g),
EQ would equal ;2.2 (these body weights,
particularly the latter, are obviously ex-
treme, thus making it extremely unlikely
that EQ values for Bodo would lie beyond
the values of 3.8 and 2.2). In spite of Bodo’s
modern human-sized brain, these EQ esti-

Fig. 1. a: Three-dimensional reconstructions of the original Bodo cranium produced from a contiguous
series of 1-mm transaxial CT slices (the cranium is rotated through 30° in the first four images). b: 3D-CT
reconstruction of the Bodo cranium after mirror-imaging various portions of the original specimen.
Compare with a. c: Left, Bodo cranium rendered transparent to view the “virtual endocast” in situ; right,
“virtual endocast” isolated from the cranium. The volume of this “virtual endocast” is 1,248 cc.
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Fig. 2.
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mates fall below EQ values found in large
samples of early Late Pleistocene to modern
Homo sapiens (both fossil and recent) and
Neandertals (Ruff et al., 1997).

CONCLUSIONS

In summary, our results support the view
expressed by Ruff et al. (1997) that the
greatest period of brain expansion in the
Homo lineage occurred in the earlier, rather
than the later, Pleistocene. Even so, Homo’s
attainment of essentially normal modern
human brain size by the early Middle Pleis-
tocene ;600,000 kya postdated by approxi-
mately one million years other significant
evolutionary changes such as the transition
from Oldowan to Acheulean industries (As-
faw et al., 1992; Clark, 1994) and to more
modern human body size and shape (Ruff
and Walker, 1993), both of which occurred
approximately 1.5 mya. If the Bodo cranium
is any guide, expansion in the absolute size
of the human brain over the last several
hundred thousand years has been relatively
minimal.
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